Functionalization of C_{60} with 1,3-Nitrilimine Dipole: Synthesis of 2-Pyrazoline Ring-Fused C_{60} Derivatives Yoshio Matsubara, Hiroki Muraoka, Hideki Tada, and Zen-ichi Yoshida* Department of Applied Chemistry, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka 577 (Received January 22, 1996) Pyrazoline ring-fused C_{60} derivatives (1, 2 and 3) as an example of monofunctionalized C_{60} with heterocycle are synthesized by using the dipolar cycloaddition. The reaction of 1,3-nitrilimine with C_{60} takes place readily to provide the target monoadduct together with the di- and triadducts in good total yields. Based on the fluorescent and electrochemical characteristics, features of pyrazoline ring-fused C_{60} are briefly discussed. Modification of C_{60} with heterocycle would be a promising area to develop a new chemistry of C_{60} and to find the novel functions of C_{60} derivatives leading eventually to biologically, chemically and/or physically interesting applications. As such a modified system, we have been interested in 2-pyrazoline ring-fused C_{60} in which the 58 π system of C_{60} sphere and the pyrazoline ring are fused in the non-conjugative manner. A special interest in the target compounds (1, 2 and 3) will be their photophysical properties because pyrazolines¹ are strongly fluorescent in the 430 nm region, while C_{60} is only very weakly fluorescent in the 730 nm region.² As a strategy for synthesis of 2-pyrazoline ring-fused C_{60} derivatives (1, 2 and 3) we have adopted the 1,3-dipolar cycloaddition of 1-phenyl-3-R-substituted nitrilimine (substituent R: t-butyl-, p-methoxycarbonylphenyl- and p-methoxyphenyl-) generated in $situ^3$ as shown in Scheme 1. An example of the reaction conditions is as follows: A solution of C_{60} (0.05 mmol) and N-(α -chloro-neopentylidene or p-substituted benzylidene)-N-phenylhydrazine⁴ (0.05 mmol) in 45 ml of benzene was refluxed for 4 h in the presence of triethylamine (14 ml, 0.10 mmol); color of the solution changed from purple to dark brown. The reaction mixture was subjected to liquid chromatography (hexane-benzene / silica gel) to provide the target product (1, 2 or 3), unreacted C_{60} and di- and triadducts with the following conversion. (1) Case of cycloaddition of 1-phenyl-3-t-butyl nitrilimine: monoadduct (1), $C_{60}(C_{11}H_{14}N_2)$, 31.3%, unreacted C_{60} 44.1%, di- and triadducts 24.6%. - (2) Case of cycloaddition of 1-phenyl-3-p-methoxycarbonyl-phenyl nitrilimine: monoadduct (2), $C_{60}(C_{15}H_{14}N_2O_2)$, 45.7%, unreacted C_{60} 29.1%, di- and triadducts 25.2%. - (3) Case of cycloaddition of 1-phenyl-3-p-methoxyphenyl nitrilimine: monoadduct (3), $C_{60}(C_{14}H_{12}N_2O)$, 24.7%, unreacted C_{60} 38.1%, di- and triadducts 37.2%. The melting points were over 300 °C for 1, 2 and 3. The structures of the target products (1, 2 and 3) were elucidated by the MS, NMR and UV-Vis spectroscopic analyses.⁶ The molecular formulas of **1**, **2** and **3** were determined by the FABMS spectra [the parent peak (m/z) 894 for **1**, 972 for **2**, and 944 for **3**] and the exact FABMS spectra [found for **1** m/z (p+1) 895.1241, calcd for $C_{60}(C_{11}H_{15}N_2)$ 895.1240; found for **2** m/z (p+1) 973.0984, calcd for $C_{60}(C_{15}H_{13}N_2O_2)$ 973.0980; found for **3** m/z (p) 944.0958, calcd for $C_{60}(C_{14}H_{12}N_2O)$ 944.0950]. Although we have already proved that cycloaddition of 1,3-diphenylnitrilimine takes place at the 6/6 bond of C_{60} , it was also confirmed for $1 \sim 3$ by observing the characteristic sharp absorption at 425-430 nm of 6/6 bond addition products. To examine the electrochemical characteristics of 1, 2 and 3, their reduction potentials were measured together with C_{60} , $C_{60}H_2^{-7}$ and 1,3-diphenyl-2-pyrazoline ring-fused $C_{60}(4)^3$ as the reference material by cyclic voltammetry⁸ (Table 1). Table 1. CV data of C₆₀ derivatives^a | Compound | E ¹ _{1/2} /V | $E^{2}_{1/2}/V$ | $E_{1/2}^{3}/V$ | |------------------------------|----------------------------------|-----------------|-----------------| | C ₆₀ | -0.94 | -1.37 | -1.81 | | $C_{60}H_{2}$ | -1.08 | -1.52 | -2.08 | | 1 (<i>t</i> -Bu/ Ph) | -1.29 | -1.74 | -2.23 | | 2 (p-CH3OCO-C6H4/Ph) | -1.28 | -1.71 | -2.23 | | 3 $(p-CH_3O-C_6H_4/Ph)$ | -1.30 | -1.73 | -2.27 | | 4 (Ph/ Ph) | -1.17 | -1.58 | -2.11 | ^aConditions: *n*-Bu₄NBF₄ (0.05 mol dm⁻³), benzonitrile, 25 °C, Pt working and Pt counter electrodes, 100 mV s⁻¹. Potentials were measured vs Fc/Fc⁺ using Ag/Ag⁺ reference electrode. $$\begin{array}{c} \text{Cl} \\ \text{R-C=N-NH} \\ \text{+ } \text{C}_{60} \\ \end{array} \begin{array}{c} \text{Et}_{3}\text{N} \\ \text{in benzene, reflux} \\ \end{array} \begin{array}{c} \text{R-C=N-N-N} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{R-C} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{R-C} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \end{array} \begin{array}{c} \text{-} \\ \text{-} \\ \end{array} \begin{array}{c} \text$$ 374 Chemistry Letters 1996 The products 1, 2 and 3 show reversible three one-electron reductions corresponding mono-, di-, and trianions, respectively. From this table we can find the following electrochemical characteristics: (1) The corresponding reduction potentials for 1, 2 and 3 are very close to each other and are shifted to the negative side by 0.2V compared with those of $C_{60}H_2$ (58 π system). Noteworthy is a significant difference between the reduction potentials for 1 \sim 3 and those for 4, suggesting a possibility of the different structure of the radical anion species formed by the reduction of the former (1 \sim 3) and the latter (4). (2) The characteristic reduction waves (irreversible) of 2-pyrazolines (Ep -1.13 \sim -1.56V) are not observed for 1, 2 and 3, suggesting the occurrence of some kind of interaction between the pyrazoline system and the 58 π system of C_{60} sphere both of which are non-conjugatively fused to each other. Interestingly fluorescence spectra of 1 and 3 in cyclohexane at room temperature appeared in the both regions at around 430 nm and 760 nm.9 The former corresponds to the emission due to the pyrazoline part, and the latter due to the C₆₀ sphere as is obvious from the following data. Fluorescence (λmax and quantum yield ϕ_f) for 1 and reference materials: 423 nm (ϕ_f 4.91 $\times 10^{-4}$ at 363 nm excitation) and 765 nm (ϕ_f 1.37 \times 10⁻⁴ at 363 nm excitation) for 1, 427 nm (ϕ_f 7.4 \times 10⁻¹ at 357 nm excitation) for 1,3-diphenyl-2-pyrazoline (reference material for the pyrazoline part), 737 nm (ϕ_f 4.7×10⁻⁵ at 370 nm excitation) for C₆₀ (reference material for C₆₀ sphere). It is to be noted that the 1-phenyl-3-t-butyl-2-pyrazoline ring fusion results in the decreasing in ϕ_f for fluorescence of the pyrazoline part but the increasing in $\varphi_f \text{for fluorescence of the } C_{60}$ sphere compared with those of the parent systems. Although the reliable emission spectra due to the C₆₀ sphere in 2 was not obtained because of incomplete elimination of the overtone of the excitation Raman, the fluorescence emission (764 nm, ϕ_f 3.17 \times 10⁻⁶ at 362 nm excitation) due to the C₆₀ sphere in 3 was remarkably weakened by the fusion of 1-phenyl-3-p-methoxyphenyl-2-pyrazoline ring, the quantum yield of fluorescence emission (424 nm, $\phi_{\rm f}$ 2.46 \times 10⁻⁴ at 362 nm excitation) due to the pyrazoline part in 3 being close to that of 1. The drastic change in the quantum yield of 760 nm fluorescence emission for 1 and 3 might presumably be interpreted in terms of difference in the photophysical process (intramolecular energy transfer or electron transfer) in 1 and 3. Intensive investigation (including low temperature fluorescence of pyrazoline ring-fused C₆₀) is currently underway to elucidate this photophysical process. This work was partially supported by Grant-in-Aids for Scientific Research No. 05453131 from the Ministry of Education, Science, Sports and Culture, Japan. ## References and Notes - 1 Y. Matsubara, H. Muraoka, H. Tada, and Z. Yoshida, to be published. - 2 Y. Wang, J. Phys. Chem., 96, 764 (1992). - 3 Y. Matsubara, H. Tada, S. Nagase, and Z. Yoshida, J. Org. Chem., 60, 5372 (1995). - 4 This reactant can be easily prepared by the condensation of the corresponding carboxylic acid (or chloride) with phenyl hydrazine, and the subsequent chlorination of the condensation product with PCl₅ (or PPh₃-CCl₄). - 5 From the amounts of unreacted C_{60} , the reactivity of - 1-phenyl-3-R-substituted nitrilimine is demonstrated to be the following order; R: p-CH₃OCO-C₆H₄->p-CH₃O-C₆H₄->t-Ru- - 6 All new compounds reported here were fully characterized by the spectroscopic analysis. The UV-Vis and NMR data are as follows. - 1: UV-vis (cyclohexane) λ max (log ε) 217(4.81), 255(4.84), 310(4.30), 426(3.27), 461(3.14); ¹H NMR (CS₂ / acetone- d_6) δ 8.89 (d, 2H, N-o-Ph), 8.49(t, 2H, N-m-Ph), 8.27(t, 1H, N-p-Ph), 1.20(s, 9H, CH_3); ¹³C NMR(CS₂ / acetone- d_6): 39 signals, (δ 82.73, 92.86, for two sp³ carbons of C₆₀ formed by the cycloaddition; 124.03, 125.11, 129.54, for phenyl CH groups; 31.72, 38.13, for t-Bu groups; 128.79, 136.17, 136.47, 140.12, 140.27, 142.20, 142.61, 142.69, 142.74, 142.81, 142.94, 143.23, 143.37, 143.56, 143.64, 144.65, 144.68, 145.54, 145.57, 145.72, 145.85, 146.10, 146.26, 146.29, 146.33, 146.55, 146.61, 146.71, 147.50, 147.84, 147.91, 151.89, for (1) one phenyl carbons without hydrogen, (2) one sp² carbon of pyrazoline >C=N- group and (3) 58 sp² carbons of C₆₀ skeleton). - **2:** UV-vis (cyclohexane) λ max (log ε) 219(4.71), 254(4.80), 336(4.47), 425(3.20), 465(3.10); ¹H NMR (CS₂ / acetone- d_6) δ 3.90(s, 3H, ester methyl), 7.92(d, 2H, N-o-Ph), 7.46(t, 2H, N-m-Ph), 7.24(t, 1H, N-p-Ph), 8.10(d, 2H, C-o-Ph), 8.42(d, 2H, C-m-Ph); ¹³C NMR (CS₂ / acetone- d_6):43 signals, (δ 52.19, one sp³ carbon of ester methyl; 81.75, 92.85, for two sp³ carbons of C₆₀ formed by the cycloaddition; 128.84, 130.21, 130.37, 130.66, 130.71, for both phenyl CH groups; 130.75, 131.09, 132.99, 136.76, 136.82, 140.14, 140.72, 142.34, 142.62, 142.75, 142.80, 142.87, 142.90, 143.29, 143.35, 144.69, 144.51, 144.73, 144.75, 145.11, 145.37, 145.60, 145.68, 145.84, 146.29, 146.35, 146.42, 146.50, 146.60, 146.68, 146.80, 146.95, 147.61, 148.01 for (1) three phenyl carbons without hydrogen, (2) one sp² carbon of pyrazoline >C=N- group and (3) 58 sp² carbons of C₆₀ skeleton; 167.67, one sp² carbon of carbonyl). - **3:** UV-vis (cyclohexane) λ max (log ϵ) 212(4.94), 255(4.91), 314(4.49), 430(3.45), 467(3.27); ¹H NMR(CS₂ / acetone- d_6): δ 3.87(s, 3H, methoxy), 7.89(d, 2H, N-o-Ph), 7.41(t, 2H, N-m-Ph), 7.18 (t, 1H, N-p-Ph), 6.99 (d, 2H, C-m-Ph), 8.17(d, 2H, C-o-Ph); ¹³C NMR(CS₂ / acetone- d_6) 42 signals, (δ 55.57, one sp³ carbon of methoxy; 82.50, 92.41, for two sp³ carbons of C₆₀ formed by the cycloaddition; 114.82, 125.33, 128.87, 129.29, 129.58, for both phenyl CH groups; 129.95, 130.66, 136.83, 136.89, 140.19, 140.79, 142.42, 142.71, 142.83, 142.90, 142.94, 142.99, 143.37, 143.42, 143.67, 143.73, 144.81, 144.84, 145.68, 145.70, 145.73, 145.82, 145.91, 146.30, 146.36, 146.42, 146.49, 146.65, 146.76, 146.89, 147.18, 147.66, 148.07 for (1) two phenyl carbons without hydrogen, (2) one sp² carbon of pyrazoline >C=N- group and (3) 58 sp² carbons of C_{60} skeleton; 161.11, one sp^2 carbon of C-p-Ph). - 7 C₆₀H₂ was prepared by modifying the Cahill's method (C. C. Henderson, P. R. Cahill, *Science*, **259**, 1885 (1993)). - 8 Cyclic and differential pulse voltammograms were recorded using BAS-100W electrochemical analyzer. - 9 Fluorescence and absorption spectra were recorded using HITACHI 850 fluorescence spectrophotometer and SHIMADZU UV-Visible recording spectrophotometer 160A, respectively. A 350 nm cutoff filter was used for fluorescence measurement.